
ECS 189A Sublinear Algorithms Fall 2024

Lecture 14: Introduction to Streaming Algorithms

Lecturer: Jasper Lee Scribe: Aadithyaa Sridharbaskari

Introducing the Streaming Model

In this course, we always want to ask which computational resource we wish to optimize.
Previously, we examined algorithms that were “sublinear in time.” For example, algorithms
that have a sublinear sample complexity or query complexity. Going forward, we will focus
on algorithms that are sublinear in space complexity. We’ll begin by defining the streaming
model. One should note that there are many variants of this model.

Streaming model setup

Let [n] be the universe or domain of our stream. The input to the algorithm in this model is
an ordered stream of length m: (σ1, σ2, . . . , σm) ∈ [n]m. The algorithm receives this stream
in an adversarial order. We want an algorithm that computes something about the stream
such that the algorithm updates its internal state after reading each σi.

Goals of the Streaming Model

The main goal of the streaming model is to minimize the memory needed at any point during
the execution of an algorithm. To accomplish this, we need to compute some “sketch” of
the elements we’ve seen so far rather than storing all of them.

What benchmark do we compare our memory usage against? Let s denote the maximum
number of bits required by our algorithm. The two quantities of interest are the stream
length m and the support size n. We consider memory usage to be sub-linear if

s = o(min(n,m)).

In other words, we aim to find algorithms whose memory complexity grows slower than the
minimum of n and m.

In particular, the holy grail of streaming algorithm memory complexity is

s = O(log n+ logm).

This means the algorithm has enough memory to store the length of the stream and the
identifier of a constant number of elements from the support at any time. Realistically, we’ll
be happy with O(polylog(n) + polylog(m)) bits. In this class, we’ll mainly be concerned
with single-pass streaming algorithms. For a motivating example of this setup, consider
a router that continuously handles internet traffic with a fixed-size memory buffer. Once
it evicts a piece of data, it’s gone forever. On the other hand, we can also consider the
multi-pass streaming model. For example, think of a magnetic tape that we can feed back
into the read/write head in a loop manner.

1



Majority Element Problem

Suppose that the stream guarantees the existence of a k ∈ [n] that appears strictly more
than m/2 times. The task is to find this k using minimal memory complexity. Clearly, if
such a k exists, it must be unique. We will analyze a simple deterministic algorithm that
solves this problem.

Algorithm 14.1 Majority element algorithm

1: Initialize count ← 0
2: Initialize majority ← NULL
3: while not end of stream do
4: Read the next stream element σi
5: if count = 0 then
6: majority ← σi
7: count ← count +1
8: else if majority = σi then
9: count ← count +1

10: else
11: count ← count −1
12: end if
13: end while
14: return majority

Note that this algorithm is particularly good in that it doesn’t even need to know the
length of the stream as long as it has > log 2m bits of memory. Why is this algorithm
correct? Intuitively, each time we increment an element, we raise our confidence that it
is the majority element. In particular, we need to see other elements just as frequently
in order to convince ourselves otherwise. Since there are fewer than m/2 non-majority
elements, there are simply not enough to offset the contribution to count from the majority
element.

Theorem 14.2 (Correctness and efficiency of Algorithm 14.1). Algorithm 14.1 will output
the correct majority length element on a stream of any length provided that one exists.
Additionally, it uses no more than O(log n+ logm) bits of memory.

Proof. Let k be the majority element. We claim that Algorithm 14.1 outputs k at the
end. For convenience of analysis, we will define count’ to be equal to count whenever
majority = k and −count otherwise. Intuitively, count′ measures how close the algorithm
is to thinking that the answer is k. Clearly, if count’ is positive at the end of Algorithm 14.1,
then it will output the correct majority element. Notice that count′ increments whenever
majority = k and decrements otherwise. Since count’ increments more than it decrements
and begins at zero, it will be positive at the end of Algorithm 14.1.

Variants of the streaming model

Often, the task will not depend on the stream ordering, just on the frequency vector. Denote
this by f = (f1, f2, . . . , fn) ∈ [m]n where fi is the number of occurrences of element i in the
stream. This motivates a slightly different setup, where each stream token gives you a pair

2



(i, c) of support element i ∈ [n] and element count c ∈ [m]. Concretely, each stream token
will increment fi by c. Of course we will have the promise that ‖f‖1 ≤ m to be consistent
with the stream length. Depending on how you constrain the element count updates c, we
can get many different interesting models. In particular

1. c > 0 corresponds to the “cash register model”

2. No restrictions on c corresponds to the “turnstile model”

3. No restrictions on c except that fi ≥ 0 at all times corresponds to the “strict turnstile
model”

Reservoir sampling

Our task is to sample an element from the stream uniformly at random. In particular, we
want to explicitly treat the stream as a multiset, meaning that multiple occurrences of an
element will give it commensurately higher probability. One can motivate an algorithm
for this problem with an inductive argument. Suppose we have already seen j elements
of the stream. We can ask how does our sampling procedure change after seeing the next
element from the stream σi+1? If we assume that everything our algorithm did before seeing
σj+1 was correct, then the sample our algorithm would output at stream index j will be a
uniform sample from the first j stream elements. Having seen σj+1, we want to output that
element with probability 1

j+1 . Thus, we can simply replace our current output with σj+1

with probability 1
j+1 . Our algorithm will simply do this at every time step j.

Algorithm 14.3 Reservoir sampling algorithm

1: Initialize sample ← NULL
2: for i ∈ {1, 2, . . . ,m} do
3: Read the next stream element σi
4: Replace sample with σi with probability 1/i
5: end for
6: return sample

Theorem 14.4 (Correctness and efficiency of Algorithm 14.3). Algorithm 14.3 uniformly
samples an element from the stream with multiplicity, and uses no more than O(log n +
logm) bits of memory.

Proof. The only memory we store is an index that goes up to the stream length and a sample
that can take values from the support, which requires no more than O(log n + logm) bits
of memory. As for correctness, we will proceed via induction as suggested earlier. Let Ei,j

denote the event that our current sample is equal to stream element σi given that we’ve
only seen the first j elements of the stream for i ≤ j. Suppose that P(Ei,j) = 1

j , and that
the next stream element we see is σj+1. If we independently replace the current sample
with σj+1 with probability 1

j+1 , then the probability that our sample is equal to σi after
seeing σj+1 is simply P(Ei,j) times the probability that we don’t replace the sample with
σj+1, which is

P(Ei,j+1) = P(Ei,j)

(
j

j + 1

)
=

(
1

j

)(
j

j + 1

)
=

1

j + 1
(1)

3



Thus, P(Ei,j+1) = 1
j+1 . We complete the induction by noting that the base case is trivial

since the probability of sampling a single element from a stream uniformly at random is
simply 1.

4


